# 2025

# Professional Dairy Managers of Pennsylvania (PDMP)

Corn Silage Hybrid Performance
Trial Results



Prepared by: Alex Hristov (PSU Animal Sciences), Sergio Francisco (Cargill), Chris Canale (Cargill), Hanna Wells(PSU Plant Science), Dayton Spackman (PSU Plant Science), Cassidy Bumbaugh (PSU Plant Science)

| <b>Production Details:</b> | Penn State/PDMP | Corn Silage Hy | ybrid Evaluation Trials |
|----------------------------|-----------------|----------------|-------------------------|
|----------------------------|-----------------|----------------|-------------------------|

| <u> </u>                                               |
|--------------------------------------------------------|
| Canton, PA                                             |
| South-Mont Farms, Lance Shedden                        |
| 6/12/2025                                              |
| Linden soils                                           |
| Halex                                                  |
| None                                                   |
| Corn silage                                            |
| None                                                   |
| 15 gal UAN                                             |
| Defcon 4.67                                            |
| 6000 gal/ac fall, 6000 gal/ac spring                   |
| 150 lbs/ac urea treated with N-ergize sidedressed 7/15 |
| 9/18/2025                                              |
|                                                        |

### Field Summary:

Some plots had uneven emergence. Weed control was excellent and fertility was optimum. No disease or insect pressure was present. This site was dry (only 9.5" for the entire season) with lower than average GDD. Due to an equipment breakdown, harvest at this site was delayed. However, dry matter content was still in an ideal range. Yields were quite low due to lack of rain.

| Weather Summa  | ary:              |                  |
|----------------|-------------------|------------------|
| Month          | Precip. In.       | GDD              |
| June 12 - 30   | 3.9               | 389              |
| July           | 3.3               | 691              |
| August         | 1.4               | 488              |
| September 1-18 | 0.9               | 185              |
| Season Total   | 9.5               | 1753             |
| Precip. Data:  | http://wundergro  | und.com <u>ی</u> |
| GDD data:      | http://climatesma | artfarming.o     |

## **PDMP Corn Silage Hybrid Testing Program 2025**

PROFESSIONAL DAIRY MANAGERS OF PENNSYLVANIA in collaboration with

Early maturity (88-103) day RM silage hybrids in Canton, PA

Notes: SEE BACKGROUND TAB
Cooperator: South Mont Farms

PennState Extension
College of Agricultural Sciences

|                    |                       |                     | Relative | Pop.         | Dry<br>Matter  | Crude<br>Protein | Lignin | Ash | Starch | TFΔ | NDFom | uNDF<br>240 hr | NDFD<br>30 | IVSD                 | Fresh<br>Yield | OM<br>Yield          | DOM<br>Yield         | OMD            |
|--------------------|-----------------------|---------------------|----------|--------------|----------------|------------------|--------|-----|--------|-----|-------|----------------|------------|----------------------|----------------|----------------------|----------------------|----------------|
| Brand              | Hybrid                | Traits <sup>1</sup> | Maturity | Plants/ac    | % <sup>2</sup> | %DM              | %DM    | %DM | %DM    | %DM | %DM   | %DM            | %NDF       | %Starch <sup>3</sup> | tons/ac⁴       | tons/ac <sup>5</sup> | tons/ac <sup>6</sup> | % <sup>7</sup> |
| 88-97 day hybrids  | ,                     |                     |          | •            |                |                  |        |     |        |     |       |                |            |                      |                |                      |                      |                |
| Kings Agriseeds    | RedTail RT 38T89      | 17                  | 88       | 34,000       | 34.8           | 8.3              | 2.1    | 3.6 | 22.6   | 1.8 | 40.1  | 10.3           | 62.3       | 68.9                 | 10.0           | 3.4                  | 2.3                  | 67.3           |
| Channel            | 197-99SSPRIB          | 40                  | 97       | 34,000       | 34.5           | 7.5              | 2.1    | 3.4 | 23.8   | 1.7 | 43.0  | 10.4           | 64.7       | 68.6                 | 12.4           | 4.2                  | 2.8                  | 68.2           |
| Channel            | 193-42VT4PRIB         | 53                  | 93       | 34,000       | 34.2           | 7.6              | 2.0    | 3.4 | 24.4   | 1.8 | 40.9  | 9.7            | 64.9       | 69.4                 | 12.3           | 4.2                  | 2.9                  | 68.7           |
| Seed Consultants   | SC946PCE              | 33                  | 94       | 31,167       | 34.2           | 8.1              | 2.0    | 3.8 | 24     | 1.7 | 39.2  | 10.1           | 63.1       | 69.8                 | 12.0           | 4.0                  | 2.7                  | 68.1           |
| Channel            | 193-40VT4PRIB         | 53                  | 93       | 34,000       | 34.0           | 7.5              | 2.0    | 3.3 | 23.2   | 1.8 | 42.2  | 9.2            | 66.4       | 68.7                 | 11.6           | 3.9                  | 2.7                  | 69.2           |
| Seed Consultants   | SC964PCE              | 33                  | 96       | 34,000       | 34.0           | 8.0              | 2.0    | 3.6 | 25.3   | 1.9 | 39.9  | 9.8            | 64.2       | 69.5                 | 11.8           | 4.0                  | 2.7                  | 68.5           |
| Shur Grow Seeds    | SG5788DV              | 19                  | 97       | 34,000       | 33.4           | 8.1              | 2.0    | 3.7 | 22.5   | 1.7 | 40.3  | 10.1           | 62.1       | 70.3                 | 10.7           | 3.6                  | 2.4                  | 67.5           |
| Seed Consultants   | SC976PCE              | 33                  | 97       | 34,000       | 32.8           | 8.0              | 2.1    | 3.6 | 24.3   | 1.8 | 39.0  | 9.6            | 63.7       | 70.2                 | 11.3           | 3.8                  | 2.6                  | 68.5           |
| Pine Creek Seeds   | R9115V                | 44                  | 91       | 34,000       | 32.7           | 8.3              | 2.4    | 3.7 | 20.2   | 1.6 | 38.8  | 10.7           | 60.2       | 69.6                 | 9.8            | 3.3                  | 2.2                  | 66.3           |
| Dekalb             | DKC093-05RIB          | 39                  | 93       | 34,000       | 32.5           | 7.4              | 2.2    | 3.4 | 22.8   | 1.7 | 43.5  | 10.4           | 64.4       | 70.5                 | 12.5           | 4.2                  | 2.9                  | 68.5           |
| Revere             | 091-P42RIB            | 50                  | 91       | 34,000       | 32.4           | 8.0              | 2.2    | 3.6 | 23.0   | 1.9 | 41.0  | 10.0           | 65.1       | 68.4                 | 10.6           | 3.6                  | 2.5                  | 68.6           |
| Growmark FS        | INVISION FS 4559PC RA | 32                  | 95       | 34,000       | 32.3           | 7.6              | 2.2    | 3.4 | 25.8   | 1.7 | 38.4  | 9.4            | 62.3       | 70.8                 | 14.1           | 4.8                  | 3.3                  | 68.0           |
| Kings Agriseeds    | RedTail RT 45T09      | 19                  | 95       | 34,000       | 32.2           | 8.1              | 2.3    | 3.6 | 21.3   | 1.7 | 40.1  | 10.4           | 61.2       | 70.1                 | 11.8           | 4.0                  | 2.7                  | 67.0           |
| Syngenta           | NK9771-DV             | 21                  | 97       | 33,000       | 31.7           | 8.3              | 2.3    | 4.0 | 16.0   | 1.3 | 43.2  | 11.5           | 56.1       | 70.9                 | 10.3           | 3.5                  | 2.3                  | 63.6           |
| Syngenta           | E097K6-D              | 17                  | 97       | 34,000       | 31.6           | 8.6              | 2.1    | 3.8 | 20.5   | 1.7 | 39.1  | 10.5           | 60.9       | 69.3                 | 11.4           | 3.8                  | 2.6                  | 66.7           |
| Revere             | 093-V37EZ             | 44                  | 93       | 34,000       | 30.2           | 8.0              | 2.1    | 3.7 | 22.9   | 1.6 | 39.6  | 10.3           | 61.9       | 70.2                 | 11.4           | 3.8                  | 2.6                  | 67.4           |
| Shur Grow Seeds    | SG5440DV              | 19                  | 94       | 34,000       | 28.5           | 8.3              | 2.3    | 3.9 | 17.1   | 1.4 | 41.2  | 10.9           | 60.9       | 71.1                 | 11.2           | 3.8                  | 2.5                  | 66.7           |
|                    |                       |                     | 88-9     | 7 day means  | 32.7           | 8.0              | 2.1    | 3.6 | 22.3   | 1.7 | 40.6  | 10.2           | 62.6       | 69.8                 | 11.5           | 3.9                  | 2.6                  | 67.6           |
| 98-103 day hybrids |                       |                     |          |              |                |                  |        |     |        |     |       |                |            |                      |                |                      |                      |                |
| Dekalb             | DKC098-55RIB          | 39                  | 98       | 34,000       | 35.2           | 8.0              | 2.0    | 3.9 | 25.6   | 1.8 | 40.4  | 9.3            | 66.3       | 68.6                 | 12.9           | 4.4                  | 2.6                  | 69.4           |
| Seed Consultants   | SC1006PCE             | 33                  | 100      | 34,000       | 33.6           | 8.0              | 2.1    | 3.6 | 23.7   | 1.8 | 39.7  | 9.1            | 66.3       | 70.4                 | 13.3           | 4.5                  | 3.2                  | 70.0           |
| Dekalb             | DKC101-33RIB          | 40                  | 101      | 34,000       | 33.4           | 7.9              | 2.0    | 3.5 | 22.3   | 1.7 | 41.2  | 9.4            | 66.6       | 69.3                 | 13.6           | 4.6                  | 3.2                  | 70.0           |
| Pine Creek Seeds   | R9917DV               | 19                  | 99       | 31,500       | 32.6           | 8.0              | 2.0    | 3.5 | 19.4   | 1.6 | 41.3  | 10.1           | 63.2       | 70.8                 | 10.4           | 3.5                  | 2.4                  | 68.0           |
| Revere             | 9827SSXRIB            | 39                  | 98       | 34,000       | 31.1           | 7.6              | 1.9    | 3.3 | 23.9   | 1.8 | 39.9  | 8.9            | 66.3       | 70.3                 | 10.6           | 3.6                  | 2.5                  | 69.8           |
| Channel            | 198-99SSPRIB          | 40                  | 98       | 32,500       | 30.9           | 8.0              | 2.0    | 3.6 | 21.5   | 1.6 | 40.5  | 9.7            | 65.3       | 70.4                 | 11.0           | 3.7                  | 2.6                  | 69.3           |
| Pine Creek Seeds   | R9916PC               | 33                  | 99       | 34,000       | 30.9           | 8.2              | 1.9    | 3.8 | 22.2   | 1.7 | 38.6  | 9.5            | 64.6       | 70.0                 | 9.4            | 3.2                  | 2.2                  | 69.0           |
| Chemgro            | 6364PCE               | 33                  | 103      | 34,000       | 30.5           | 7.6              | 2.1    | 3.6 | 21.2   | 1.6 | 42.3  | 10.2           | 64.1       | 70.3                 | 13.2           | 4.5                  | 3.0                  | 68.3           |
| Shur Grow Seeds    | SG5885PCE             | 33                  | 98       | 34,000       | 30.3           | 7.7              | 2.1    | 3.5 | 21.7   | 1.6 | 39.6  | 9.9            | 63.0       | 70.4                 | 11.6           | 3.9                  | 2.7                  | 68.0           |
| Growmark FS        | INVISION FS 5159PC RA | 32                  | 101      | 34,000       | 29.4           | 8.1              | 2.0    | 3.6 | 21.8   | 1.7 | 39.1  | 9.7            | 64.2       | 70.5                 | 11.0           | 3.7                  | 2.6                  | 68.8           |
| `                  |                       |                     | 98-10    | 3 day means  | 31.8           | 7.9              | 2.0    | 3.6 | 22.3   | 1.7 | 40.3  | 9.6            | 65.0       | 70.1                 | 11.7           | 4.0                  | 2.7                  | 69.1           |
|                    |                       |                     |          | •            |                |                  |        |     |        |     |       |                |            |                      |                |                      |                      |                |
|                    |                       |                     |          | Overall Mean | 32.4           | 7.9              | 2.1    | 3.6 | 22.3   | 1.7 | 40.4  | 10.0           | 63.5       | 69.9                 | 11.6           | 3.9                  | 2.6                  | 68.1           |
|                    |                       |                     |          | LSD(0.1)     | 1.8            | 0.5              | NS     | NS  | NS     | 0.2 | NS    | NS             | 2.6        | 1.1                  | 1.8            | 0.6                  | 0.4                  | 1.6            |
|                    |                       |                     |          | CV%          | 4.0            | 4.8              | 8.4    | 7.3 | 15.5   | 9.5 | 5.5   | 8.7            | 3.0        | 1.2                  | 11.3           | 11.5                 | 10.1                 | 1.7            |

<sup>&</sup>lt;sup>1</sup> **Traits:** See tab " Trait Key" for individual trait designation.

<sup>&</sup>lt;sup>2</sup> Dry Matter: Tables are sorted by dry matter. <u>Avoid making comparisons with hybrids that differ significantly in dry matter.</u>

<sup>&</sup>lt;sup>3</sup> IVSD: Starch digestibiliy (% of starch) is analyzed by an NIRS method on samples ground through a 4-mm screen and incubated for 7 hours (IVSD).

<sup>&</sup>lt;sup>4</sup> Fresh Yield: Silage yields are expressed on a 35 percent DM basis; all other parameters are expressed on a dry matter basis.

<sup>&</sup>lt;sup>5</sup>OM Yield: Silage yield (tons/ac) expressed on an organic matter (OM) basis.

DOM Yield: Yield of digestible organic matter.

## PDMP Corn Silage Hybrid Testing Program 2025

PROFESSIONAL DAIRY MANAGERS OF PENNSYLVANIA in collaboration with

Early maturity (88-103) day RM silage hybrids in Canton, PA

Notes: SEE BACKGROUND TAB
Cooperator: South Mont Farms



|       |        |                     |          |           | Dry            | Crude   |        |     |        |     |       | uNDF   | NDFD |                      | Fresh                | ОМ       | DOM                  |                |
|-------|--------|---------------------|----------|-----------|----------------|---------|--------|-----|--------|-----|-------|--------|------|----------------------|----------------------|----------|----------------------|----------------|
|       |        |                     | Relative | Pop.      | Matter         | Protein | Lignin | Ash | Starch | TFA | NDFom | 240 hr | 30   | IVSD                 | Yield                | Yield    | Yield                | OMD            |
| Brand | Hybrid | Traits <sup>1</sup> | Maturity | Plants/ac | % <sup>2</sup> | %DM     | %DM    | %DM | %DM    | %DM | %DM   | %DM    | %NDF | %Starch <sup>3</sup> | tons/ac <sup>4</sup> | tons/ac⁵ | tons/ac <sup>6</sup> | % <sup>7</sup> |

<sup>7</sup> OMD: Organic Matter Digestibility - Please see "OMD Story" tab for information on how to use this column **NS** = Not Significant

Prepared by: Alex Hristov (PSU Animal Sciences), Sergio Francisco (Cargill), Chris Canale (Cargill), Hanna Wells(PSU Plant Science), Dayton Spackman (PSU Plant Science), Cassidy Bumbaugh (PSU Plant Science), Charlie White (PSU Plant Science)

Compiled by Chris DiFonzo Michigan State University Texas A&M University

Web site hosted by Pat Porter

The most up-to-date version and related extension materials are free online at: www.texasinsects.org/bt-corn-trait-table.html Questions? difonzo@msu.edu

|                | TABLE 2<br>Principal trait packages available in                     | latta-         | Traits in the package                                       |             | ne oi       | mor         | e ren       | nain   | effe        | aits i<br>tive (<br>ead (f | (x)         |             |             | L)          | Refuge<br>in<br>northern           | Weed<br>control<br>Trait |
|----------------|----------------------------------------------------------------------|----------------|-------------------------------------------------------------|-------------|-------------|-------------|-------------|--------|-------------|----------------------------|-------------|-------------|-------------|-------------|------------------------------------|--------------------------|
| Trait Key<br># | the U.S. (alternate names in parentheses)                            | letter<br>code | Font type denotes target:<br>caterpillar or <i>rootworm</i> | B<br>C<br>W | C<br>E<br>W | E<br>C<br>B | F<br>A<br>W | S<br>B | S<br>C<br>B | S<br>W<br>C<br>B           | T<br>A<br>W | W<br>B<br>C | N<br>C<br>R | W<br>C<br>R | states<br>(higher in the<br>south) | *check<br>bag tag        |
|                | Conventional                                                         | С              | Cout Alb. Cout E                                            | -           | n           | DI.         | DI.         |        |             | DI                         |             |             | _           |             | EN/ blood                          | CIV. II                  |
| 3              | AcreMax                                                              | AM             | Cry1Ab Cry1F                                                | X           | R           | RL          | RL          | Х      | Х           | RL                         |             | R           |             |             | 5% blend<br>5% blend               | GLY LL<br>GLY LL         |
| 4              | AcreMax Leptra                                                       | AML            | Cry1Ab Cry1F Vip3A Cry1Ab Cry1F Cry34/35Ab1                 | ×           | X<br>R      | RL<br>RL    | X<br>RL     | x      | X           | X<br>RL                    | х           | X<br>R      | RL          | R           | 10% blend                          | GLY LL                   |
| 6              | AcreMax Xtra                                                         | AMX            | Cry1Ab Cry1F Cry34/33Ab1                                    | *           | K           | KL          | KL          | х      | X           | NL.                        |             | _ r         | KL          | I.          | 10% blend                          | GLY LL                   |
| 7              | AcreMax Xtreme                                                       | AMXT           | Cry1Ab Cry1F<br>Cry34/35Ab1 mCry3A                          | ×           |             | RL          | RL          | х      | х           | RL                         |             | R           | х           | R           | 5% blend                           | GLY LL                   |
| 11+12          | Agrisure Above (Agrisure3120EZ)  AA Refuge Renew (Agrisure3120)      | AA             | Cry1Ab Cry1F                                                | x           | R           | RL          | RL          | х      | x           | RL                         |             | R           |             |             | 5% blend<br>Renew: 5%              | GLY LL*                  |
| 13+14          | Agrisure Total (Agrisure3122EZ) AT Refuge Renew (Agrisure3122)       | AT             | Cry1Ab Cry1F<br>Cry34/35Ab1 mCry3A                          | х           | R           | RL          | RL          | х      | х           | RL                         |             | R           | х           | R           | 5% blend<br>Renew: 5%              | GLY LL*                  |
| 15             | Agrisure Viptera 3110                                                | 3110           | Cry1Ab Vip3A                                                | ×           | х           | RL          | х           | х      | х           | х                          | х           | х           |             |             | 20%                                | GLY LL                   |
| 16             | Agrisure Viptera 3111                                                | 3111           | Cry1Ab Vip3A <i>mCry3A</i>                                  | х           | х           | RL          | х           | х      | х           | х                          | х           | х           | х           | R           | 20%                                | GLY LL                   |
| 17+18          | Duracade (Agrisure5122EZ) D Refuge Renew (Agrisure5122)              | D              | Cry1Ab Cry1F<br>eCry3.1Ab mCry3A                            | x           | R           | RL          | RL          | х      | х           | RL                         |             | R           | х           | R           | 5% blend<br>Renew: 5%              | GLY LL*                  |
| 19+20          | Duracade Viptera (Agrisure5222EZ) DV Refuge Renew (Agrisure5222)     | DV             | Cry1Ab Cry1F Vip3A<br>eCry3.1Ab mCry3A                      | x           | х           | RL          | х           | х      | х           | х                          | х           | х           | х           | R           | 5% blend<br>Renew: 5%              | GLY LL*                  |
| 21+22          | Duracade Viptera Z3 (Agrisure5332EZ) DVZ Refuge Renew (Agrisure5332) | DVZ            | Cry1Ab Cry1A.105 Cry2Ab2 Vip3A<br>eCry3.1Ab mCry3A          | х           | х           | RL          | х           | х      | x           | х                          | х           | х           | х           | R           | 5% blend<br>Renew: 5%              | GLY LL*                  |
| 29             | Intrasect                                                            | YHR            | Cry1Ab Cry1F                                                | ×           | R           | RL          | RL          | х      | х           | RL                         |             | R           |             |             | 5%                                 | GLY LL                   |
| 30             | Leptra                                                               | VYHR           | Cry1Ab Cry1F Vip3A                                          | ×           | х           | RL          | х           | х      | х           | х                          | х           | х           |             |             | 5%                                 | GLY LL                   |
| 32             | PowerCore Refuge Adv.                                                | PWRA           | Cry1A.105 Cry2Ab2 Cry1F                                     | ×           | R           | RL          | х           | х      | х           | RL                         |             | R           |             |             | 5% blend                           | GLY LL                   |
| 33             | PowerCore Enlist<br>or Enlist Refuge Advanced                        | PWE<br>PCE     | Cry1A.105 Cry2Ab2 Cry1F                                     | х           | R           | RL          | х           | х      | х           | RL                         |             | R           |             |             | 5%<br>Adv 5% blend                 | GLY LL<br>Enlist         |
| 57             | PowerCore Ultra Enlist<br>or Ultra Enlist Refuge Advanced            | PWUE<br>PCUE   | Cry1A.105 Cry2Ab2 Cry1F Vip3A                               | х           | х           | RL          | х           | х      | х           | х                          | х           | х           |             |             | 5%<br>Adv 5% blend                 | GLY LL<br>Enlist         |
| 34             | QROME                                                                | Q              | Cry1Ab Cry1F<br>Cry34/35Ab1 mCry3A                          | х           | R           | RL          | RL          | х      | х           | RL                         |             | R           | х           | R           | 5% blend                           | GLY LL                   |
| 35             | SmartStax or Genuity SS                                              | SS SX          | Cry1A.105 Cry2Ab2 Cry1F                                     | х           | R           | RL          | х           | х      | х           | RL                         |             | R           | RL          | R           | 5%                                 | GLY LL                   |
| 36             | SmartStax Enlist<br>SS Enlist Refuge Advanced                        | SSE            | Same as SmartStax                                           | х           | R           | RL          | х           | х      | х           | RL                         |             | R           | RL          | R           | 5%<br>Adv 5% blend                 | GLY LL<br>Enlist         |
| 38             | SmartStax Refuge Advanced<br>SmartStax RIB Complete                  | SXRA           | Same as SmartStax                                           | ×           | R           | RL          | х           | х      | ×           | RL                         |             | R           | RL          | R           | 5% blend                           | GLY LL                   |
| 40             | SmartStax PRO                                                        | SSPro          | Cry1A.105 Cry2Ab2 Cry1F<br>Cry3Bb1 Cry34/35Ab1 dvSnf7       | ×           | R           | RL          | х           | х      | x           | RL                         |             | R           | х           | ×           | 5%                                 | GLY LL                   |
| 41             | SmartStax PRO Enlist<br>SSPro Enlist Refuge Advanced                 | SSPro          | Same as SmartStax Pro                                       | х           | R           | RL          | х           | х      | х           | RL                         |             | R           | х           | х           | 5%<br>Adv 5% blend                 | GLY LL<br>Enlist         |
| 42             | SmartStax PRO Refuge Advanced<br>RIB Complete or w/RNAi Tech         | SSPro          | Same as SmartStax Pro                                       | ×           | R           | RL          | х           | х      | х           | RL                         |             | R           | х           | х           | 5% blend                           | GLY LL                   |
| 43             | Trecepta RIB Complete                                                | TRERIB         | Cry1A.105 Cry2Ab2 Vip3A                                     | х           | х           | RL          | х           | х      | х           | х                          | х           | х           |             |             | 5% blend                           | GLY                      |
| 44+45          | Viptera (Agrisure3220EZ) Vip Refuge Renew (Agrisure3220)             | V              | Cry1Ab Cry1F Vip3A                                          | х           | х           | RL          | х           | х      | х           | х                          | х           | х           |             |             | 5% blend<br>Renew: 5%              | GLY LL*                  |
| 46+47          | Viptera Z3 (Agrisure3330EZ) VZ Refuge Renew (Agrisure3330)           | VZ             | Cry1Ab Cry1A.105 Cry2Ab2 Vip3A                              | х           | х           | RL          | х           | х      | ×           | х                          | х           | х           |             |             | 5% blend<br>Renew: 5%              | GLY LL*                  |
| 48             | Vorceed Enlist                                                       | V              | Cry1A.105 Cry2Ab2 Cry1F<br>Cry3Bb1 Cry34/35Ab1 dvSnf7       | х           | R           | RL          | х           | х      | х           | RL                         |             | R           | х           | х           | 5% blend                           | GLY LL<br>Enlist         |
| NA             | Vorceed Enlist Structured<br>- Expected in 2026                      | VS             | Cry1A.105 Cry2Ab2 Cry1F<br>Cry3Bb1 Cry34/35Ab1 dvSnf7       | х           | R           | RL          | х           | х      | ×           | RL                         |             | R           | х           | х           | 5%                                 | GLY LL<br>Enlist         |
| 49             | VT Double PRO                                                        | VT2P           | Cry1A.105 Cry2Ab2                                           |             | R           | RL          | х           | х      | х           | RL                         |             |             |             |             | 5%                                 | GLY                      |
| 50             | VT2 PRO RIB Complete                                                 | VT2PRIB        | Cry1A.105 Cry2Ab2                                           |             | R           | RL          | х           | х      | х           | RL                         |             |             |             |             | 5% blend                           | GLY                      |
| 52             | VT3 PRO RIB Complete                                                 | VT3PRIB        | Cry1A.105 Cry2Ab2 Cry3Bb1                                   |             | R           | RL          | х           | х      | х           | RL                         |             |             | RL          | R           | 10% blend                          | GLY                      |
| 53             | VT4 PRO w/RNAi Technology                                            | VT4PRO         | Cry1A.105 Cry2Ab2 Vip3A<br>Cry3Bb1 dvSnf7                   | ×           | х           | RL          | х           | х      | х           | х                          | ×           | х           | ×           | ×           | 5% blend                           | GLY                      |

### The OMD Index

The digestibility of nutrients in corn silage is paramount when determining nutritional value. Starch and NDF are responsible for much of the digestible energy in corn silage. In order to give dairy producers and nutritionist a tool to evaluate corn silage hybrids, we developed a new digestibility index, called the Organic Matter Digestibility Index (OMDI or just OMD), and is based on digestibility of protein, fat, NDF, and starch. The sum of which makes up approximately 86-88% of the organic matter in corn silage.

The OMD index represents the digestible portion of silage organic matter and is based on chemical analyses only. It does not predict dry matter intake or milk production, although numerous studies clearly show that digestibility of forage organic matter is directly related to lactation performance of dairy cows. The OMD index does not represent the absolute digestibility of silage organic matter, as this can be reliably determined only in experiments with live animals. But, OMD is representative of the potentially digestible organic matter of the whole plant and can be used to compare silage hybrids. Furthermore, simulation analyses using the Cornell Net Carbohydrate and Protein System (CNCPS v. 6.55; Cornell University, Ithaca, NY) show that OMD correlates reasonably well with model-predicted milk production of dairy cows fed a standard diet containing approx. 40% corn silage (dry matter basis).

#### How is the OMD Index Used?

Feeding value of corn silage is mostly associated with digestibility of NDF or starch. A long-standing goal of PDMP is to create a single measure of silage nutritive value using several variables associated with digestibility. Traditional variables, crude protein (accounted for fiber-bound nitrogen), NDF, starch, lignin, and fat, are combined with digestibility determinations for NDF (NDFD30\*) and starch (IVSD; 7-hour, 1-mm grind). Once combined, these digestibility coefficients sum to predict OMD.

The OMD Index is calculated using the following equation: OMDI (%) =  $\{[(\text{crude protein} - \text{NDICP}) \times 0.89] + (\text{total fatty acids} \times 0.75) + (\text{starch} \times \text{IVSD} \div 100) + [(\text{aNDFom} - \text{lignin}) \times \text{NDFD30} \div 100)]\} \div [(\text{crude protein} - \text{NDICP}) + \text{total fatty acids} + \text{starch} + (\text{aNDFom} - \text{lignin})] \times 100.$ 

Where: OMDI (%) is Organic Matter Digestibility Index; crude protein, total fatty acids, starch, NDICP (NDF-bound crude protein), aNDFom (ash-free basis, amylase-treated NDF), and lignin (ash-free) are expressed as % of corn silage dry matter; 0.89 is assumed (based on literature data) coefficient of digestibility of silage crude protein; 0.75 is assumed (based on literature data) coefficient of digestibility of silage total fatty acids; IVSD is starch digestibility (by NIRS at 7-hour and sample ground through a 4-mm sieve) expressed as % of starch; and NDFD30.

Use of OMDI: The OMD index is intended to represent the digestible portion of silage dry matter and is based on chemical analyses. OMD does not represent the absolute digestibility of silage organic matter, but it is representative of the potentially digestible organic matter and can be used when comparing silage hybrids. Simply put, the higher the OMD value, the higher the overall expected digestibility of the silage. OMD reflects the digestibility of key nutrients within the entire plant. Producers without carryover of silage should consider the interaction of OMD and DOM (digestible organic matter yield per acre) as yield of digestible organic matter will be equally as relevant as OMD.

#### Conclusion

Organic matter digestibility is not a new measure. For years, researchers and nutritionists have used digestibility estimates to formulate rations for dairy cattle. Today, integrating these data is a useful practice to gauge silage value and match hybrid to farm needs. Put simply, OMD measures whole plant digestibility. Emphasis is on digestibility of all main nutrients. In the end, we hope OMD serves to facilitate discussion among producer, seed consultant, and dairy nutritionist as to which hybrids offer the best nutrient value for dairy cows.